
Resource Management for the Heterogeneous Arrays of Hardware Accelerators

Zdenek Pohl and Milan Tichy

Department of Signal Processing

Institute of Information Theory and Automation

182 08 Prague, Czech Republic

Email: {zdenek.pohl,tichy}@utia.cas.cz

Abstract—The resource management (RM) of heterogeneous
hardware cores within the large-scale embedded systems have
been one of the key implementation and research subjects in
last years. In future systems, consisting of growing number of
heterogeneous hardware cores, the RM have to be implemented
to control the energy drain, exploit maximally the performance
potential, and also to improve robustness of the system by
bypassing failing components. We present the resource man-
agement providing an API for parallel execution of operations
on a heterogeneous set of resources. The RM controls the
tasks execution and monitors the performance. The information
collected by the RM is used to optimize the execution. In this
paper, we propose and present the SW implementation of the
RM for the MicroBlaze soft-core processor running the Linux
OS and accelerated by the heterogeneous array of hardware
accelerators.

Keywords-resource management; FPGA; embedded systems;
hardware acceleration; power management; scalability

I. INTRODUCTION

The number of transistors-per-area available in future

embedded system products is increasing. It is expected that

in a near future, integration of tens or even hundreds of

cores on a chip will be possible. Similarly, applied to the

FPGA field it is expected that the area of the device allows

presence of not only multi-core microprocessors but also

many various hardware accelerators capable to solve specific

problems power efficiently.

The devices will accommodate many competing applica-

tions, such as phone, television, movie player, or the Internet

integrated in one low-power, wireless handheld device. Some

of the applications can run sequentially and some of them

in parallel, interacting with each other.

Such architectures will contain heterogeneous subsystems

as well as homogeneous parts. It is expected that the

programing of such systems will be more difficult by order

of magnitude.

The growing trend in number of processor cores and other

hardware components in one embedded device can be clearly

seen in today’s architectures. Such platforms are demand-

ing the implementation of the resource management (RM),

which will help to overcome technological difficulties that

come from increased power density and power consumption.

The RM will be able to monitor system conditions and to

adapt the system to the available resources, increasing its

performance, reliability and fault recovery.

The aim of this paper is to analyze the implementation

of the resource manager for the MicroBlaze [1] micro-

controller closely coupled with hardware accelerators to

improve performance of the embedded system. We focused

on the following issues: the scalability of the system, the

power management, the design time reduction of user appli-

cations, and the improvement in the utilization of processing

elements.

II. HARDWARE ACCELERATORS IN THE RM

The architecture used for accelerating the MicroBlaze

system is based on the UTIA master-worker platform. The

platform exploits a set of heterogeneous hardware accel-

erators to improve the MicroBlaze’s computational perfor-

mance, particularly in calculation of vector operations. The

architecture of the platform is described in detail in [2]–

[5]. Similar approach to improving performance of a micro-

processor using vector-oriented hardware accelerators can

be found in [6]–[9]. Different approach focusing on the OS

integration and partial dynamic run-time reconfiguration of

dedicated HW cores is used in [10]–[13].

From the resource management point of view, the hard-

ware accelerators can be divided into families, where each

family represents a group of compatible accelerators sharing

common arithmetic or purpose. The second parameter that

describes the accelerator is the SIMD mode, which corre-

sponds to the number of data contexts processed indepen-

dently by the accelerator. The last accelerator parameter is

the so called capabilities (caps). The capabilities represent

functions implemented by the accelerator. For example,

the complex accelerator can include hardware support for

calculation of the dot-product, while another can contain

support for the cumulative summation or magnitude of the

complex vector. Thus, these features are represented as the

special capability of such accelerator.

In perspective of the resource management, the computa-

tional resource A can be defined as the triplet:

A ≡ (family, simd, caps) , (1)

where the family is the family ID number, the simd is the

SIMD mode and the caps is the bit-array representing the



accelerator’s capabilities.

The computation resource definition (1) is used to intro-

duce the resource compatibility to the RM in our concept.

The computational resource compatibility can be formulated

as follows: the resource A is compatible with the resource

B if all operations to be performed on the resource A can

be mapped to the resource B. It can be defined as:

A → B ⇐⇒











family(A) = family(B)

simd(A) ≤ simd(B)

caps(A) ⊆ caps(B)

(2)

It is evident that this concept of compatibility allows to

map tasks on the desired resource or on more “capable”

resources of the same family. The incremental set of acceler-

ator capabilities allows to achieve better hardware utilization

by the effective use of the resource management.

III. RESOURCE MANAGEMENT

The resource manager provides a user application with

the abstraction layer to isolate an application programmer

from the hardware. The user API allows to request, call,

release, reserve, and allocate hardware resources that form

the embedded platform. Main features that are addressed

by the RM include: hardware abstraction, unified interface,

performance and power control, resource sharing, resource

compatibility, load balancing, semi-automatic handling of

parallelism and synchronization, isolation of data flows from

the control, and low RM overhead.

With respect to the RM requirements, we can define the

resource management task (to be run on an accelerator).

Such task is considered as atomic operation. The task is

defined by: input and output data, input and output state,

parameters and constraints, and firmware. In current imple-

mentation of the RM, the tasks are assumed to be static.

The firmware is represented by the user-defined microcode

controlling and executing a more complex atomic operation

in accelerators. Note that even if the hardware accelerator

operations are stateless, the tasks are not. The consequent

execution of the task on hardware can alter its state. Another

parameter related to each task is its processing priority and

the reference to its predecessor, the task whose internal

state must be used for the current execution, and to its

successor, the task that uses the result of previous one. The

task structure is schematically depicted in Figure 1(a). The

last parameter of the task is the description of the requested

accelerator required for its execution. The requested accel-

erator is described using the form given by (1). Such task

definition allows the resource manager to optimize the task

execution regarding its priority, local data preservation in

the hardware accelerator, parameters preservation, and state

synchronization.

The top-level structure of the RM implementation is de-

picted in Figure 1(b). The resource management is interfaced

from a user application via its entry point represented by the

Global Resource Manager (GRM) layer. Within this layer,

the ability to accept and process the task is checked and the

task is passed to the appropriate Local Resource Manager

(LRM) layer entry point. If more LRM candidates can

process the task, the GRM implements the load balancing

based on the minimization of weighted counts of processed

task with exponential forgetting, while respecting the task

location constraints.

The LRM layer is represented by one or more LRM

instances. Each LRM instance is created for a cluster of

homogeneous HW accelerators, i.e. for HW accelerators of

the same type. Such concept allows the scheduler inside the

LRM instance to schedule incoming tasks to the homoge-

neous array of identical hardware accelerators.

The scheduling strategy strives to preserve the data lo-

cality by sending each task to the same accelerator as its

predecessor. If the task has a successor, the scheduler waits

for it by exclusion of a given accelerator from the load

distribution. The tasks without predecessor are distributed

evenly to the remaining accelerators.

IV. CASE STUDIES

For the benchmarking of the proposed resource manage-

ment, several application scenarios were implemented. In

this paper, we present two applications: the physical layer

of the digital audio broadcasting (DAB) receiver [14] and

the radio spectrum sensing application. 1

To implement these applications using our platform, ac-

celerators of two families were used: the complex family and

the Fast Fourier Transform (FFT) accelerators. The complex

accelerator provides a native support for vector floating-point

(FLP) operations, such as vector copy, addition, multipli-

cation, dot-product, multiply-accumulate, cumulative sum-

mation, etc. in the complex domain. The FFT accelerator

supports FFT and inverse FFT of orders 8 to 2048.

V. EVALUATION OF THE RM PERFORMANCE

The resource management behavior has been investigated

under different working conditions using a number of appli-

cation scenarios and hardware configurations. We focused

mainly on the scalability, the design time reduction (porta-

bility), power consumption, and the system performance.

A. Scalability and Portability

As mentioned above, the resource manager provides a

user application with the abstraction layer to isolate an ap-

plication programmer from HW. Using the RM framework,

the user application can be implemented to follow its goals,

exploiting its parallelism.It is evident that the portability of

1The sensing application has been developed by Thales within the project
SCALOPES as a common test case. It constitutes the evaluation use case,
not an optimized sensing algorithm for cognitive radio.



(a) (b)

Figure 1. The task structure (a) and the resource management structure (b)

any user applications becomes an easy task once the RM

has been adapted to the available hardware resources.

The portability is closely related to the scalability of the

system. Generally, a significant re-design effort must be

invested in order to adapt the algorithm onto a platform with

different number of hardware accelerators, or with different

but compatible accelerators. The resource management is

able to exploit all the resources automatically.

B. Power Consumption

To evaluate the power reduction, the Xilinx Spartan-3A

DSP 1800A development board has been used. This board

has been chosen specifically for the power consumption

evaluation as it allows measuring of the input current on

its power supply jumper. The mixed signal oscilloscope,

the Agilent MSO 6034A scope equipped with the N2783A

current probe have been used for measuring.

The power control of hardware resources is one of the

key points to achieve success in parallel architectures as

the multiple processor or accelerator cores can ruin the

consumption limits normally posed on the embedded, battery

powered systems.

The possibility to turn off all accelerator cores not in

use was integrated into the resource management. The cores

can be technically turned off by employing the technique of

clock gating [15]. The accelerator cores are isolated from the

accelerator local memories and can still be turned off while

the data communication with accelerator local memories is

pending.

The measured power consumption reduction is 13.34% for

the sensing application and 20.12% for the DAB application.

This particular power savings correspond to a minimalist

case when one complex and one FFT accelerators were

used. The presented reductions are minimal in comparison to

configurations where more hardware accelerators are present

in the system.

The impact of clock gating can be viewed in two per-

spectives. Naturally, the best power savings are related to

accelerators in their idle periods. When accelerators are not

in use, the reduction of power consumption can be up to

40%. Less power savings are related to accelerators in their

busy states, where the clock gating can be applied only

during data communication. It is evident that the power

reduction is strongly application dependent.

C. Performance Scaling

The concept of the resource management allows to dis-

tribute the tasks to an arbitrary number of accelerators, lim-

ited only by parallelism employed in the user applications.

By adding more hardware (more parallel accelerators in our

case) to the system, the performance automatically increases

if the resource management is in use.

By detailed analysis of the results, it was found that

adding one complex accelerator improves performance by

42.7%. Another complex accelerator brings additional 6.5%
performance boost.

D. Resource Management Overheads

Naturally, the resource manager introduces overheads

on the execution of tasks in hardware accelerators. The

overheads are represented by the time consumed by load

balancing, task scheduling, accelerator operations control

etc. For the evaluation of overheads, the profiling informa-

tion is collected by the RM for each processed task. Such

information is represented by the time stamps created at

individual processing stages as well as by the times related

to data communications and hardware execution. Similar

information is also used by the RM scheduler for planning

the hardware accelerated operations. Based on the profiling

information it was evaluated that the resource management

overhead is 2% for the radio spectrum sensing application

and 6% for the DAB application.



We have also compared the reference radio spectrum sens-

ing application (non-RM, manually mapped on the UTIA

platform) to the one exploiting the resource management.

We found that the RM overhead is negligible with respect to

the reference design running on the same number of parallel

workers. That is, the resulting implementation exploiting

features of the resource management almost completely

suppresses the overheads related to the RM.

VI. CONCLUSIONS

The SW implementation of the resource management pro-

vides a user application with the abstraction layer to isolate

an application programmer from the hardware and controls

the execution of tasks on available hardware accelerators.

To fully exploit the features of the resource manager, the

following requirements have to be met:

1) The accelerators have to support the clock-gating

control and to use interrupts allowing successful inte-

gration to the large-scale hardware platform controlled

by the resource manager.

2) The user application has to define its operations in

the form of formalized tasks accepted by the RM.

The tasks are executed analogically to the creation of

another thread in the user application process, i.e. the

execution has to be started by the “create” operation

and the end of operation has to be synced by the “join”

operation.

The implementation of the user applications employing

the resource manager is, to some extent, independent of

the hardware resources. Thus, the applications are easily

portable among various hardware configurations. Using such

feature, the resource management significantly reduces the

design time necessary for customization to a different but

compatible accelerators.

The significant power savings have been achieved by the

application of the resource management. We presented the

minimal power reduction 13.34% for the radio spectrum

sensing application and 20.12% for the DAB application.

We have shown that the power reduction increases with the

number of accelerators in the system.

The ability of the resource manager to distribute the tasks

to available hardware resources directly leads to performance

scaling of the user application. We have presented that the

automatic distribution of tasks on more accelerators bring

the performance boost up to 49.2% for the radio spectrum

sensing application.

ACKNOWLEDGEMENTS

This work was supported and funded by the ARTEMIS

Joint Undertaking under the grant agreement No. 100029

and by the national funding project No. MSMT 7H09005.

REFERENCES

[1] MicroBlaze Processor Reference Guide, Xilinx, Inc., Nov.
2010, v11.4.

[2] J. Kadlec, R. Bartosinski, and M. Danek, “Accelerating Mi-
croBlaze floating point operations,” in Int. Conf. Field Prog.
Logic and Applications. IEEE, 2007, pp. 621–624.

[3] J. Kadlec, M. Danek, and L. Kohout, “Proposed architecture
of configurable, adaptable SoC,” in The Inst. of Eng. and Tech.
Irish Signals and Systems Conf., ISSC, Galway, IE, 2008.

[4] J. Kadlec, “Design flow for reconfigurable Microblaze ac-
celerators,” in Int. Workshop Reconfigurable Communication
Centric System-on-Chips, 2008.

[5] M. Danek, J. Kadlec, R. Bartosinski, and L. Kohout, “Increas-
ing the level of abstraction in FPGA-based designs,” in Int.
Conf. Field Prog. Logic and Applications. IEEE, 2008, pp.
5–10.

[6] J. Cho, H. Chang, and W. Sung, “An FPGA based SIMD
processor with a vector memory unit,” in Int. Symp. Circuits
and Systems, 2006.

[7] H. Yang, S. Wang, S. Ziavras, and J. Hu, “Vector processing
support for FPGA-oriented high performance applications,”
in IEEE Comp. Soc. Annual Symp. VLSI, 2007, pp. 447–448.

[8] S. Chen, R. Venkatesan, and P. Gillard, “Implementation
of vector floating-point processing unit on FPGAs for high
performance computing,” in Canadian Conf. Electrical and
Comp. Eng., 2008, pp. 881–886.

[9] J. Yu, C. Eagleston, C. H.-Y. Chou, M. Perreault, and
G. Lemieux, “Vector processing as a soft processor acceler-
ator,” ACM Trans. Reconfigurable Technol. Syst., vol. 2, pp.
12:1–12:34, June 2009.

[10] H. Walder and M. Platzner, “Reconfigurable hardware oper-
ating systems: From design concepts to realizations,” in Int.
Conf. Eng. of Reconf. Syst. and Arch., 2003, pp. 284–287.

[11] D. Andrews, D. Niehaus, R. Jidin, M. Finley, W. Peck,
M. Frisbie, J. Ortiz, E. Komp, and P. Ashenden, “Program-
ming models for hybrid FPGA-CPU computational compo-
nents: A missing link,” IEEE Micro, vol. 24, pp. 42–53, 2004.

[12] P. Garcia and K. Compton, “Shared memory cache organi-
zations for reconfigurable computing systems,” Symp. Field-
Programmable Custom Comp. Machines, pp. 239–242, 2009.

[13] H. K.-H. So and R. W. Brodersen, “BORPH: an operating
system for FPGA-based reconfigurable computers,” Ph.D.
dissertation, EECS Department, UC Berkeley, Jul 2007.

[14] ETSI EN 300 401 V1.4.1: Radio Broadcasting Systems;
Digital Audio Broadcasting (DAB) to mobile, portable and
fixed receivers, Jun. 2006, reference REN/JTC-DAB-36.

[15] A. Hermanek, M. Kunes, and M. Tichy, “Reducing power
consumption of an embedded DSP platform through the
clock-gating technique,” in Int. Conf. Field Prog. Logic and
Applications. IEEE, 2010, pp. 336–339.


